查看: 2432|回复: 12
打印 上一主题 下一主题

[经验心得] [转载] 解谜英语语法

[复制链接]

该用户从未签到

95

主题

554

回帖

2万

积分

翰林院编修

终身学习者

Rank: 11Rank: 11Rank: 11Rank: 11

积分
24557

翰林院专用章灌水大神章笑傲江湖章小蜜蜂章管理组专用章

跳转到指定楼层
1
发表于 2019-12-27 10:17:05 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
解谜英语语法
我发现很多人仍然在为语法的枯燥繁琐而头痛。市面上好像不存在一本深入本质的语法教材。语法对于我来说已经早就不是问题,所以我萌生了写这样一篇文章的念头,帮助那些正在为学习语法而痛苦挣扎的人们。
这篇文章里包含了一些我自己保留多年的关于英语学习的秘密。我曾经想过把这写成一本完整的语法书,可是后来发现似乎一篇文章足矣。
句子的核心地位
直到几百年前,各个不同大陆上的人还从来没见过面,他们的语言里却不约而同出现了同样的结构:句子。这似乎说明句子的出现是一种自然规律,必然结果,而不只是巧合。
句子是人类语言最核心的构造。为什么呢?因为人和人说话终究是为了一个目的:描述一件事。
这件事也许只有一个字:吃!
也许可以很长:昨天晚上在上海某路边餐厅吃的鹅肝我吃遍全世界最好的
一个句子表达的就是一件事,或者叫一个“事件”。人与人交流,无非就是讲述一个个的事件。
许多人学英语,一来就背单词,背了很多单词,仍然写不出像样的句子来。只见树木不见森林,因为他们没有意识到句子才是最关键的部分。我们应该一开头就理解句子是什么,如何造出句子,而不是背单词。单词是树木,句子才是森林。
你需要的能力
所以掌握一门语言,基本就是要掌握句子。有了句子就有了一切。
掌握句子包括两种能力:
  • 能够迅速地造出正确的句子,准确地表达自己的意思。
  • 能够迅速地分析别人的句子,准确地理解别人的意思。
这两件事,一个是表达(发送),一个是理解(接收)。因为语言是沟通(或者叫“通讯”)的工具,所以它就只包含这两件事。
句子的本质
假设我们是原始人,还没有语言。我想告诉同伴“我吃苹果”这件事,该怎么表达呢?没有语言,那我可以先画个图嘛:
画图是很麻烦的,笔画太多不说,还可能有歧义。到后来,部落里的人聪明了一点,发明了“符号”这种东西,只需要几笔就能表示一个概念。他们给事物起了简单的符号名字,不再需要画图了。于是我们有了 I, apple 这样的词用来指代事物。有了 eat 这样的词,用来代表动作。所以画面变成这个样子:
后来干脆连框也不画了,直接写出这些符号来,这就是我们现在看到的“句子”:
I eat apples.
注意,虽然没有了上面的框图,这句话其实隐含了这幅图。写这个句子的人假设阅读者能够从一串符号还原出一个画面(或者叫结构)来。
有些人不能理解别人的话,看书看不懂,就是没能从符号还原出结构来。很多语法书列举出千奇百怪的“组合情况”,为的只是帮助你从这串符号还原出结构来。在现代语言学和计算机科学里面,这个过程就叫做“语法分析”(parsing)。
动词是句子的核心
那么,你觉得“我吃苹果”这个事,里面最关键的部分是什么呢?是“我”,“苹果”,还是“吃”呢?
稍微想一下,你也许会发现,关键在于“吃”这个动作。因为那是我和苹果之间发生的事件。这句话是说“吃”这件事,而“我”或者“苹果”,只是“吃”的组成部分。
用 eat 这个词,你不但可以表达“我吃苹果”,还可以表达“他吃面条”,“猫吃老鼠”之类的很多事情。于是,聪明一点的人就把 eat 这个词提取出来,做成一个“模板”:
这个模板就是所谓“动词”。eat 这个动词给你留下两个空,填进去之后,左边的东西吃右边的。
句子是语言的核心,而动词就是句子的核心。动词是事件的关键,比如 eat。
A eat B.
我们可以选择空格里的 A 或者 B 是什么。但不管怎么换,事情仍然是“吃”。为了描述方便,我们把 A 和 B 这两个空格叫做参数(parameter)。
这跟数学函数的参数(f(x) 里面那个 x)类似,也跟程序函数的参数类似。用数学或者程序的方式来表示这个句子,就是这样:
eat(A, B)
其中 A 和 B,是动作 eat 的参数。我只是打个比方帮助你理解,当然我们不会这样写英语。如果你完全不懂数学或者编程,可以忽略这个比方。
动词决定了它可以有几个参数,它们可以在什么位置,参数可以是什么种类的成分。比如 eat,它可以有两个参数。这两个参数只能是某种“物体”。你不能放另一个动作(比如 walk)进去,也不能放一个形容词(比如 red)进去。这种动词对参数的约束,叫做参数的“类型”。
在这个例子里,eat 可以接受两个“名词”(noun),所以它的两个参数,类型都是 noun。
你可能注意到了,I eat apples 里面的“I”并不是名词,而是“代词”。我解释一下。我这里所说的“名词”,是泛指一切物体以及指代物体的名字。所以我叫做“名词”的东西,也包括了代词,比如 I, you, he, she, it。如果你回想一下代词的英文是 pronoun,就会意识到它和名词(noun)之间的关系。
你会发现这种扩展的“名词”,会大大方便我们的理解。在本书中除非特别指明,所谓“名词”包括了代词,以及一切可以被作为名词使用的结构(比如从句,动名词)。
一个句子除了动词,好像就只剩下动词的参数了。动词对它的参数具有决定性的作用,动词就是句子的核心。准确理解一个动词“想要什么参数”,什么样的结构可以出现在参数的位置,就是造出正确句子的关键。
使用不同的动词可以造出不同的句子。所以要理解语法,你在应该把大部分精力放在各种各样的动词身上,而不是花几个月时间去背名词和形容词。我并不是说名词和形容词不重要,只是它们并不是核心或者骨架。
没有人会怪你不认识某种恐龙的名字,但如果你不能理解“I am not used to eating garbage food.” 是什么意思,那你可能就有麻烦了。
具有三个参数的动词
现在举个复杂点的例子:
Coffee makes me happy. (咖啡使我快乐)
这里的动词是 make。跟 eat 不大一样,make 可以接受三个参数:coffee, me, happy。它的模板可以表示为:
A make B C
意思是:A 使得 B 具有性质 C。
比如 Coffee makes me happy,其中 A 是 coffee,B 是 me,C 是 happy
再来一个例子:
I told you everything. (我告诉了你一切)
这里动词 tell 也有三个参数,它的模板是这样:
A tell B C.
意思是:A 告诉 B 一件事 C。
比如 I told you everything,其中 A 是 I,B 是 you,C 是 everything
扯个淡:什么是宾补
说到这里我想扯个淡。初学者不知道什么是“宾补”的,可以跳过这一节,你不会损失什么。
在传统语法里,上面一节的 A make B CA tell B C 被看做是不同的语法现象,前者被称为含有“宾语补足语”,后者含有“双宾语”。可是在我们的框架下,这两者都不过是“接受三个参数的动词”。你只需要熟悉 A make B CA tell B C 是什么意思就可以了。
A make B C 里的 C 参数,其实就是传统语法叫做“宾语补足语”(宾补)的东西。然而跟传统语法不同,我不把它叫做“宾补”。这个成分没有任何特殊的名字和地位,而只是动词 make 的第三个参数。
有的动词可以有三个参数,有的动词只能有两个参数,有的动词只有一个参数。有的动词有时有两个参数,有时只有一个参数…… 就是这么简单,没有什么道理好讲,因为人们就是那么说话的。
人们约定俗成的说话方式,决定了 make 可以有三个参数,决定了这三者之间的关系:A 使得 B 变得 C。这就像数学的“定义”一样,是没有道理可讲的。你只需要多多练习,按照这个模板造句,知道它具体的意思就可以了。
模板“A make B C”,精确地决定了动词 make 可以产生的句型,定义了参数 A,B 和 C 之间的关系。你不需要把 C 叫做“宾补”就能明白这个句子在说什么。实际上,我认为“宾语补足语”,“补足语”这些术语,基本是子虚乌有的。它们来源于一种古板的观念,认为句子只有主谓宾三种成分,所以多出来一个东西,就只能叫做”补足语”了。他们没有意识到,有的动词可以有三个参数,就是这么简单。
如何造出正确的句子
我已经提到,对于人的语言能力,“造句”能力占了一半。很多人不知道复杂的长句是怎么造出来的,所以他们也很难看懂别人写的长句。
我并不是说一味追求长句是好事,正好相反。如果你能用短句表达出你的意思,就最好不要用长句。虽说如此,拥有造长句的“能力”是很重要的。这就像拥有制造核武器的能力是重要的,虽然我们可能永远不会用到核武器。
当然,长句不可能有核武器的难度。造长句其实挺容易。你先造出一个正确的短句,然后按照规则,一步步往上面添加成分,就可以逐渐“生成”一个长句。
这就像造一个房子,你首先打稳地基,用钢板造一个架子,然后往上面添砖加瓦。你可以自由地选择你想要的窗户的样式,瓦片的颜色,墙壁的材质,浴缸的形状…… 好像有点抽象了,我举个例子吧。
首先,我造一个最简单的句子。最简单的句子是什么呢?我们已经知道动词是句子的核心,有些动词自己就可以是一个句子。所以我们的第一个句子就是:
eat.
它适用于这样的场景:你在碗里放上狗粮,然后对狗儿说:“吃。” 当然,你体会到了,这句话缺乏一些爱意,或者你只是早上起来还比较迷糊,不想多说一个字,但它至少是一个正确的句子。
接下来,我们知道 eat 可以加上两个参数,所以我就给它两个参数:I 和 apples。
I eat apples. (我吃苹果)
这个句子适用于这样的场景:别人问我:“你一般吃什么水果呢?” 我说:“我吃苹果。”
有点单调,所以我再加点东西上去。
I eat Fuji apples. (我吃富士苹果)
Fuji 被我加在了 apples 前面,它给 apples 增加了一个“修饰”或者“限定”。它只能是富士苹果,而不是其它种类的苹果。
但我并不总是吃富士苹果,我有时不吃苹果。我想表达我只是“有时”吃富士苹果,所以句子又被我扩充了:
I sometimes eat Fuji apples. (我有时吃富士苹果)
你觉得这个 sometimes 是在修饰(限制)句子的哪个部分呢?它在修饰“我”,“苹果”,还是“吃”?实际上,它是在限制“吃”这个动作发生的频率,所以它跟 eat 的关系紧密一些,也就是说它是在修饰 eat,而不是 I 或者 apples。
以此类推,我们可以把它发展得很长:
I sometimes eat fresh Fuji apples from a nearby grocery store.
我有时候吃从附近杂货店买来的新鲜富士苹果。注意,虽然这句子挺长,但它的“骨架”仍然是 I eat apples.
我已经演示了一个长句是怎么“生成”的。先造一个短句,然后往上面添砖加瓦。正确的短句,按照规则加上一些成分,就成为正确的长句。从正确走向正确,这样你的语法就会一直是正确的。
当然,扩展句子的时候,你不能随意往上加东西,它们必须满足一定的规则才能正确的衔接。比如,你只能把 Fuji 放在 apple 前面,而不是后面,from 之类的词不可少。这就像造房子,你不能在该放窗户的地方放一道门,你不能用错配件,漏掉胶水。所谓语法,很多时候就是在告诉你这些部件要怎么样才能接的上,就跟做木工活一样。
如何理解句子
人与人交流的另一个部分就是“接收”。如果书上有很长一句话,你要怎么才能理解它呢?许多人看到长句就头痛,不知道该怎么办。这是因为他们不明白长句都是从短句扩展出来的,是有结构的。许多人理解长句失败的原因,在于他们总是从左到右,一个个的扫描单词。开头几个词感觉还认识,再多看几个词,就不知道是怎么回事了。
其实理解长句的方法,都隐含在了上一节介绍的造长句的方法里面。造句的时候我们先勾画出一个框架,然后往里面填修饰的成分。理解的时候如果有困难,我们可以用类似的办法。我们首先分析出句子的主干,把这个框架理解了,然后再把其它成分放回去,逐步把握整个句子的含义。
这个分析主干的过程,往往是“跳跃式”的,而不是“顺序式”的扫描单词。
比如之前的那个例子:
I sometimes eat fresh Fuji apples from a local grocery store.
你需要跳过修饰的成分,分析出句子的主干是短句“I eat apples”。如果你觉得一下子找不到主干,那么你可以挨个找到“修饰成分”,把它们逐个删掉,最后留下来的就是主干了。
注意,主干“I eat apples” 本身就是一个语法正确的句子,它满足所有的语法规则。于是你理解了它在说“我吃苹果”。然后你返回去再看几遍,逐渐加上细节,知道是什么样的苹果,从哪里买来的,什么时候吃。
漏掉或者误解了细节,你可能会误解一部分意思,但抓住了主干,你就不会完全不理解这个句子在说什么。
再次强调,每一个复杂的长句,里面都藏着一个非常短的,语法正确的短句。理解长句的关键,就在于找到这个核心的短句。
如何获得识别修饰成分,找到主干短句的能力,也在于你对具体的语法规则的理解。
句子的树状结构
之前,我们的原始人画了这样一个图:
它表示这样一个英语句子:
I eat apples.
很多人觉得后者是更简洁,更先进的方法。然而他们没有意识到,原始人的图片里,其实包含了关键而本质的东西。被转换成一串符号之后,里面的结构看不见了,反而需要费一些脑筋才能理解。这个简单的情况也许不能说明问题,等句子复杂起来之后,你就能体会到这一点。
从现代语言学,计算机自然语言处理(NLP)的观点看来,句子并不是一串符号,而是一个“树状”的结构。我们把这种树叫做“语法树”。
比如 I eat apples,其实表示的是下图这样的结构:
你可以把这个图看成是一棵倒着长的树。你把屏幕旋转 180 度,就会看到一棵树。树干 eat 发出两个“分支”,连接着它的两个参数:I 和 apples。为了表达清晰,我用红色圆圈来表示动词,而用蓝色方形表示名词。
动词 eat 需要两个名词参数,我们给它 I 和 apples,就成了一个完整的句子。再次声明,我这里的“名词”,包括了像“I”这样的“代词”。
扩展一棵树
之前我们通过扩充 I eat apples 这句话,得到了一个逐渐变长的句子。现在有了“语法树”的概念,我们来重新演示一下这个扩充句子的过程,看看它对应的语法树是怎么变化的。
首先,我们给苹果加上“富士”(Fuji)的修饰:
I eat Fuji apples.
Fuji 是对 apples 的修饰,或者说是它的“属性”,所以我们在树上把它和 apples 连在一起。
对于这种“修饰”成分,我们用绿色方框来表示。它们通过灰色箭头指向它们所修饰的部分。
接着,我们加上一个时间修饰 sometimes:
I sometimes eat Fuji apples.
由于 sometimes 是修饰 eat 动作的频率,我们把它指向 eat 动词节点。
最后那个复杂点的句子:
I sometimes eat fresh Fuji apples from a nearby grocery store.
它的语法树大概是这个样子:
之所以说“大概”,是因为我没有把“from a nearby grocery store”完全表示成一棵树结构。当我们觉得暂时没必要深入理解一个部分的时候,我们可以把它合在一起。所以“from a nearby grocery store”一起放在了一个节点里,表示对 apples 的另一个修饰成分。
树的作用
从上面的扩展过程,你也许发现了语法树在造句时用处。它帮助你快速的“定位”需要扩展的部分。如果你的句子只是一串字符,那么你得先用眼睛找到你需要的部分,把它和旁边的文字分离开。
在理解句子的时候,它的用处就更加明显了。树结构把句子之间相关的部分都直接连在了一起,所以你能清晰地看到它的结构。哪个词在修饰哪一部分,都一目了然。看看上面最复杂的那个句子,你可以一眼就能看出它的主干是什么:
对比一下原来短句的语法树,你发现虽然句子变长了,然而它的主干其实一点都没有变,仍然是 I eat apples。如果把句子写成一行,你就需要通过一阵子分析才能知道主干是什么。
这就是为什么我跟你讲语法树这个概念,因为它可以简化你对句子结构的理解。帮助你造句,帮助你理解复杂的句子。如果有长句看不懂,你可以使用语法树对其进行分解。
如何培养真正的语言能力
这一章我只是介绍了你需要的两种能力,可是如何培养这两种能力呢?其实它们两者是相辅相成的。造句的能力可以帮助你理解别人的句子,而阅读别人的句子,分析其结构,可以帮助你获得造出类似句子的能力。
所以我给你开的处方是这样:
  • 练习造句。每学一个动词,要先看例句,然后用它造出多个句子来。这样你就获得了灵活运用的能力。
  • 分析句子。看到一个复杂的句子,觉得理解有难度,你就把它抄下来。按照我介绍的“造句方法”,把它分解成主干和修饰成分。不久,你就会发现理解能力和造句能力都提高了。
要注意的是,分析句子的时候,没必要去纠结一个句子成分“叫什么”,对应什么术语。比如它是表语还是宾语,还是宾补…… 这没有意义。
你可以理解任何英语句子,你可以成为很好的记者或者作家,却仍然不知道什么叫做“宾补”。你只需要造句的能力和理解句子的能力,而你不需要术语就能做到这两点。
另外,你分析的句子来源,最好是真正的,有良好风格的英文书籍,而不是来自中国人写的语法书。比如,你可以选一本通俗易懂的英文小说,比如《哈利波特》的第一部。或者你可以用英文杂志(比如《TIME》)上的文章。很有趣的是,中国人写的语法书里面,为了演示各种语法规则,经常是“没有困难,制造困难也要上”,造出一些外国人根本不会用的,容易让人误解的句子。这种句子,就算你分析清楚了,反而是有害的。这种丑陋的句子会破坏人的语感,而且让你觉得语法无比困难,打击你的信心。你受到影响之后,就会写出类似的,让外国人看了翻白眼的丑陋句子。
最后可能有人问,你这是提高实际的英语能力,可是我需要应付标准化考试,这样学能行吗?当然行,而且你做语法题的速度会非常快。托福,雅思,GRE 之类的考试,不可能变态到要你“找出句子里的宾补成分来”。实际上,题目里根本不可能出现“宾补”这类词。他们只会在某个位置留一个空,让你选择合适的内容填进去。也就是说,你不需要知道那个成分叫“宾补”,就能做对题。
实际上,做题的时候,你的头脑里根本不应该出现“宾补”这样的术语。具有了真正的英语能力,做语法选择题的时候,你会一眼就选对正确的答案,却说不出这道题在考你哪方面的能力。是时态呢,还是某种句子成分?我不知道,因为那毫无意义。我就是感觉其它答案都不“顺口”,我根本不会写那样的句子,而正确的选项一眼看起来就是“通的”。
所以不管是实际的交流还是做题,死抠语法术语都没有什么意义。你去问问每一个英国人,美国人,他们是怎么做对语法题的,你会得到同样的答案。你应该努力得到这种母语级别的能力,而不是记住一些纸上谈兵的术语。
(如果你觉得这篇文章有启发,可以点击这里付费


本帖被以下淘专辑推荐:

  • TA的每日心情
    擦汗
    2023-2-15 04:29
  • 签到天数: 72 天

    [LV.6]常住居民II

    143

    主题

    628

    回帖

    4295

    积分

    贡士

    Rank: 6Rank: 6

    积分
    4295
    推荐
    发表于 2019-12-27 16:31:42 | 只看该作者
    说实话,楼主你这套没多大用,语法想学就一定能学会,而且没准比用某些投机取巧的办法学得更好。
  • TA的每日心情
    擦汗
    2022-10-5 15:24
  • 签到天数: 614 天

    [LV.9]以坛为家II

    9

    主题

    1614

    回帖

    1万

    积分

    状元

    Rank: 9Rank: 9Rank: 9

    积分
    18686
    推荐
    发表于 2019-12-27 18:40:18 | 只看该作者
            楼上文章感觉很好,讲解通俗易懂,逻辑清晰严密,不过似乎更适合于成人?
            学习语法大概因人而异。传统语法只是在欠缺母语环境时帮助你快速掌握语言规律的拐杖。而掌握传统语法框架,尤其是句子部分,应该不是太难。然后就可以让步于阅读写作等实践了。至于其他语法细节,可以在实践中慢慢补充。
            这种在有一定基础时理性学习语法框架(尤其是句子部分),然后在阅读中积累对语言的感性认识,逐渐提升,大体也是上文所提倡的做法。

    该用户从未签到

    539

    主题

    3046

    回帖

    25万

    积分

    翰林院编修

    Rank: 11Rank: 11Rank: 11Rank: 11

    积分
    251476

    翰林院专用章灌水大神章笑傲江湖章小蜜蜂章管理组专用章

    推荐
    发表于 2019-12-27 11:07:17 | 只看该作者
    王垠的文章,不能说不好,确实讲得很通俗易懂嘛,只是……单单这些内容,就冠以「解谜英语语法」的标题,是否太……自大?(王垠的个性确实如此)

    我来举个未必恰当的例子:英語常用詞疑難用法手冊:

    ■ not 所否定的范围

    就谓语和状语而言(暂时不论宾语),not 可能有三个不同的否定范围(参见 not... because...):

    1) 只否定谓语动词,不否定谓语动词后的状语。

    The police didn't release his name because of his age. 由于他的年龄,警察没有公布他的名字。
    2) 不否定谓语动词,只否定谓语动词后的状语。

    They had not gathered in this remote wooded area forty miles west of Moscow to relive the past. 他们到莫斯科以西四十英里这处偏僻的森林地带来聚集,并不是要重温过去。

    3) 把谓语动词连同其后面的状语合在一起作为一个整体加以否定。

    Working in an open-source world is not without its hardships. There is no toll-free number to call when things don't work, as is the case with packaged software. 在一个源头开放的世界里活动,总是免不了遇到种种麻烦。东西不灵了,就不能像买来原装的软件那样有免费电话号码可以查询。

    这里有时候会出现歧义。

    ……

    英语常用词疑难用法手册的作者,特别爱讲传统语法术语,所以有的地方挺叫人头疼的。

    不用谓语、状语这种术语,能不能把英语里复杂的现象、面貌说清楚?应该是可以的。问题是:

    1. 市面上不少号称「超简单的、一看就明白的英语语法」,并不触及复杂的问题,高阶读者格外需要解惑的地方,「超简单」语法都不说
    2. 想要找足够丰富、全面的语法,很难抛弃传统术语。王垠是否有意写一本「深入本质」又「全面丰富」的语法教材呢?应该有人比我更了解他,可以说说
  • TA的每日心情
    奋斗
    2019-4-14 02:12
  • 签到天数: 93 天

    [LV.6]常住居民II

    250

    主题

    2966

    回帖

    53万

    积分

    状元

    吃水不忘挖井人

    Rank: 9Rank: 9Rank: 9

    积分
    531040

    灌水大神章笑傲江湖章推广专家QQ 章

    3
    发表于 2019-12-27 12:21:32 | 只看该作者
    klwo2 发表于 2019-12-27 11:07
    王垠的文章,不能说不好,确实讲得很通俗易懂嘛,只是……单单这些内容,就冠以「解谜英语语法」的标题,是 ...

    方法都有其局限性,但在其适用的范围内可能完全够用。等在这个范围里,已经到了拔剑四顾心茫然的地步,可能就不仅满足于此,而会去寻求更深入更适合的方法或策略了。
    ps:上面提到的open-source的翻译… 大概就体现了某种内容上的局限性吧…哈 大概王垠不会犯这种错误。
  • TA的每日心情
    开心
    2022-1-21 00:52
  • 签到天数: 699 天

    [LV.9]以坛为家II

    17

    主题

    1754

    回帖

    1万

    积分

    状元

    Rank: 9Rank: 9Rank: 9

    积分
    19738
    4
    发表于 2019-12-27 12:28:58 | 只看该作者
    语法是对语言现象的总结,或者说是简化的模型,不同角度方式都是可以的。
    语法一点不懂不行,但很多国人和语法书往往是失之于过深。
    推荐旋元佑的语法书,一开头介绍了5种基本句型,比此文全面但不过分复杂。
    旋元佑文法 2019 介绍
    https://www.pdawiki.com/forum/thread-35988-1-1.html?x=180507
  • TA的每日心情
    奋斗
    1 小时前
  • 签到天数: 1226 天

    [LV.10]以坛为家III

    21

    主题

    1534

    回帖

    1万

    积分

    状元

    Rank: 9Rank: 9Rank: 9

    积分
    10192
    5
    发表于 2019-12-27 13:15:48 | 只看该作者
    看了上面的啥 “语法树”, 可以反映出作者的计算机背景;

    本来计算机语言的很多东西都来源于自然语言的概念,比方说 N.乔姆斯基 的生成理论就对计算机语言方面的影响和应用尤为明显;

    作者又反过来,用计算机语言的思维反作用于自然语言... 至于对语言的学习有没有用?这全是主观意愿。  

    个人感觉计算机语言的思维 可以 “来分析反作用于自然语言的部分” 恰恰是最初“自然语言输出给计算机语言的那部分子集”,那么大致就是用子集的属性来探讨研究自然语言这个大整体(部分---到---整体),这显然不合理吧?

    因为本身自然语言没有那么纯粹的规律,不像是计算机非1即0; 相比计算机,自然语言更像是一种模糊语言 .

    个人认为只能作参考,但是“揭秘” ?有待商榷。

    以上纯属个人观点,如有谬误,多多包涵!
  • TA的每日心情
    开心
    2018-8-8 03:13
  • 签到天数: 1 天

    [LV.1]初来乍到

    254

    主题

    4264

    回帖

    7万

    积分

    状元

    Rank: 9Rank: 9Rank: 9

    积分
    79050

    小蜜蜂章笑傲江湖章灌水大神章QQ 章

    QQ
    6
    发表于 2019-12-27 14:15:36 | 只看该作者
    本帖最后由 喬治兄 于 2019-12-27 15:00 编辑

    Brother henices :
    前陣子在圖書館亂翻統計類的書
    提及人工智慧, 後來發現人工智慧 N-Gram 和馬可夫鏈略有相關
    在某種程度上應也是涉及 贝叶斯概率(英语:Bayesian probability
    可視為數位電路的 State Machine + 馬可夫鏈 + 贝叶斯概率
    樹狀結構 + 贝叶斯概率 ==>決策判斷模型
    State Machine + 马尔可夫链蒙特卡洛(英语:Markov chain Monte CarloMCMC)方法 ==> 可分析風險值.......
    然而在 ( Operations Research 作業研究 ) 國內可能叫作 運籌學 吧, 也都會提及以上的模型和方法

    MCMC方法是使用马尔科夫链的蒙特卡罗积分,其基本思想是:构造一条Markov链使其平稳分布为待估参数的后验分布,通过这条马尔科夫链产生后验分布的样本,并基于马尔科夫链达到平稳分布时的样本(有效样本)进行蒙特卡罗积分。设为某一空间n为产生的总样本数m为链条达到平稳时的样本数则 MCMC方法的基本思路可概括为:


    • 构造Markov链。构造一条Markov链,使其收敛到平稳分布;===>此無非就是二維或多維隨機變數的聯合動差......因計算頗為複雜因而一般採用 MCMC 摹擬可更為快速求得答案
    • 产生样本:由中的某一点出发,用i中的Markov链进行抽样模拟,产生点序列:
    • 蒙特卡罗积分。任一函数的期望估计为:
    在采用MCMC方法时马尔科夫链转移核的构造至关重要,不同的转移核构造方法将产生不同的MCMC方法,当前常用的MCMC方法主要有两种Gibbs抽样和Metropo-Lis-Hastings算法。

    https://zh.wikipedia.org/wiki/N%E5%85%83%E8%AF%AD%E6%B3%95

    https://zhuanlan.zhihu.com/p/32829048

    https://medium.com/%E6%89%8B%E5%AF%AB%E7%AD%86%E8%A8%98/%E8%87%AA%E7%84%B6%E8%AA%9E%E8%A8%80%E8%99%95%E7%90%86-%E4%BD%BF%E7%94%A8-n-gram-%E5%AF%A6%E7%8F%BE%E8%BC%B8%E5%85%A5%E6%96%87%E5%AD%97%E9%A0%90%E6%B8%AC-10ac622aab7a

    在學習自然語言處理 (Natural Language Processing) 時,經常會從語言模型 (Language Model) 開始學起,N-gram 便是一個入門常見語言模型。在這篇文章將帶你一探究竟 N-gram,並且利用 N-gram 實作一個模型,能夠像似搜尋引擎根據使用者的輸入推薦相關的字詞。
    語言模型 (Language Model) 與 N-gram 原理
    語言模型這 4 個字看似很博大精深,但是它僅僅指的就是「一個句子的機率」,在一個句子中的每個字,我們可以給它 P(S),代表每個字的機率。
    假設我們給定一個句子「花博即將在台中__ 」,在留空的地方一般人都會想到該填入「舉行」,也就是當出現「花博即將在台中」,電腦能夠推斷出在這句話的後方出現「舉行」的機率最高。
    所以我們假設第 i 個字會跟第 1 個字到 i-1 個字有關,這時你會發現如果這個句子很長,該機率計算量將會變得非常大,因此我們可以利用 Markov 假設,也就是當前的這個字僅僅與前幾個有限的字相關,如此一來,將不必追溯至第 1 個字,可以減少該機率的計算量:

    當 m = 3 時,也就是第 i 個字與前 3 個字有相關,稱作 3-gram 或 trigram。用上述的例子舉例,我們要找一個字會令 P(w|在台中) 的機率最高,假設推算出 P(舉|在台中) 的機率最高後,再繼續找出另一個字讓 P(w|台中舉) 的機率最高。
    這時你會想該如何計算 P(w|在台中) 這種條件機率?我們可以使用最大似然估計 (Maximum Likelihood Estimation ),詳細推導可以看這篇 ????文章:

    藉由計算字詞出現的次數來推估 N-gram 的機率,所以我們要做的事情是計算「在台中 w」與「在台中」分別出現的次數,再相除得到 P(w|在台中) 的機率。
    從零開始實現 N-gram
    在這個範例中,我們會使用 Open data 作為資料集,並且利用 N-gram 訓練一個語言模型。
    我們會用到 Collections 中的 namedtuple 與 Counter。namedtuple 提供的功能是像 C 語言的 struct,能夠清楚表達一個資料的結構;而 Counter 則是能夠快速地幫助我們計算數量,例如 list 中每個元素的數量各有幾個。

    引入資料集
    在這篇文章中使用的資料集是政府資料開放平台提供的 ????桃園市官網市政新聞,由於 N-gram 所產生的結果會根據資料集而有所不同,因此在選擇資料集時必須評估該資料集是否合適。假設使用的資料集中包含許多火星文,根據 N-gram 產生的語言模型,其結果將會與火星文相關。

    資料前處理
    桃園市官網市政新聞包含了許多的資料欄位,而我們需要的僅有報導文章的部分,因此將報導單獨取出。
    而報導中包含許多許多英文、數字與表點符號,為了實作方便,將除了繁體中文字以外的字用正規表達式 (Regular Expression) 去除。

    N-gram 實作
    在實作 N-gram 時,首先,我們要將每一篇文章做 tokenize;而我們想知道一篇文章的開頭與結尾,所以在 tokenize 之後,在前後分別加上 <s> 和 </s> 作為標示。
    而在計算每個字出現的機率後,可以利用 set,將重複的字與機率去除,例如計算出兩次在「桃園」後出現「縣」的機率都是 1,我們可以只保留一組。

    訓練模型與排序
    我們使用的模型是 trigram,也就是計算接在兩個字之後第三個字的機率。接著,可以對結果進行排序,因此在預測下一個字時,能夠直接取得前幾個最高機率的字。

    預測輸入的下一個字
    最後,我們使用模型來預測接下來可能會出現的文字,輸入「韓國」後出現的下一個字為「仁、及、地、超、文」最高機率的這 5 個字。

    結論
    N-gram 是一個理論較為簡單,而且容易實作的語言模型,可以花少量的程式碼達到不錯的效果。
    但是,也許你會思考在預測下一個字時,得出字組合起來沒有特別的意思,因為 N-gram 只是單純利用統計得出機率比較大的字詞組合,所以在預測時看似會較沒有邏輯。
    如果想要得出更好的結果可以嘗試使用較為複雜的模型,例如 Transformer 或是 ConvS2S 等 Google 與 Facebook 曾經發表的模型。



    评分

    1

    查看全部评分

  • TA的每日心情
    奋斗
    2019-4-14 02:12
  • 签到天数: 93 天

    [LV.6]常住居民II

    250

    主题

    2966

    回帖

    53万

    积分

    状元

    吃水不忘挖井人

    Rank: 9Rank: 9Rank: 9

    积分
    531040

    灌水大神章笑傲江湖章推广专家QQ 章

    7
    发表于 2019-12-27 16:01:24 | 只看该作者
    喬治兄 发表于 2019-12-27 14:15
    Brother henices :
    前陣子在圖書館亂翻統計類的書
    提及人工智慧, 後來發現人工智慧 N-Gram 和馬可夫鏈略有 ...

    乔治兄的这个评论好,完美科普了N-Gram,受益匪浅,感谢!
  • TA的每日心情
    奋斗
    2018-5-18 05:02
  • 签到天数: 27 天

    [LV.4]偶尔看看III

    78

    主题

    479

    回帖

    8680

    积分

    版主

    Rank: 10Rank: 10Rank: 10

    积分
    8680

    管理组专用章

    10
    发表于 2019-12-28 05:39:08 | 只看该作者
    其实可以把英语和德语放一起学,这两种语言的相似度比较大。

    该用户从未签到

    37

    主题

    689

    回帖

    5851

    积分

    翰林院编修

    Rank: 11Rank: 11Rank: 11Rank: 11

    积分
    5851

    翰林院专用章灌水大神章笑傲江湖章小蜜蜂章管理组专用章

    11
    发表于 2020-1-1 01:13:09 | 只看该作者
    俗话说,因材施教,遇到那种不可救药的讲啥都白搭。
  • TA的每日心情
    奋斗
    2021-4-9 12:40
  • 签到天数: 93 天

    [LV.6]常住居民II

    1

    主题

    162

    回帖

    3458

    积分

    贡士

    Rank: 6Rank: 6

    积分
    3458
    12
    发表于 2020-9-20 07:18:21 | 只看该作者
    看到“语法对于我来说已经早就不是问题”,真是羡慕。
    不过看到上面说的中国人自己编写的语法书往往看了可能不好,有些无语。有时候为了辅助教学,
    造些实际不那么好的句子无可厚非,不过感觉要说清楚,告诉读者实际不要这么说。
  • TA的每日心情
    奋斗
    2021-4-9 12:40
  • 签到天数: 93 天

    [LV.6]常住居民II

    1

    主题

    162

    回帖

    3458

    积分

    贡士

    Rank: 6Rank: 6

    积分
    3458
    13
    发表于 2020-9-20 07:31:16 | 只看该作者
    看了后,感觉这篇文章说得太过简单了。当然,作者的水平太高,很多东西可能在他看来太简单,没必要说吧,但是对于水平低的,就不是那么
    回事了。看后有收获,但是要提高还是多练习。